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1.0 SUMMARY

This report describes work performed under the “Adaptive Aiding for Warfighter Operations” work 
unit. As originally conceived, this work was intended to advance the state of the art in 
neurophysiological triggering of adaptive aiding. Early results indicated that the most significant 
roadblock to this triggering scheme was poor stability of existing techniques when applied over 
longer time periods, such as days or weeks. Consequently, work focused on addressing this issue. 
Over the course of this effort, two techniques for enhancing the stability of workload monitoring via 
pattern classification of neurophysiology were identified and demonstrated to be effective. The first 
technique is to collect baselines over multiple days. The second is to collect a small (5 minutes) 
amount of baseline data for each new day that you wish to run the system. When used together, 
stability over days and weeks rises to the same level as stability within a few hours, and is likely 
adequate for future applications.

2.0 INTRODUCTION

The application of pattern classification to physiological data has become increasingly popular.  This 
includes a wide range of areas such as brain-computer interfaces (BCI, reviewed in Birbaumer, 
2006), neurology (Blanco, et al., 2010), psychiatry (Coburn, et al., 2006) and multi-voxel pattern 
analysis of fMRI data (e.g. Kamitami & Tong, 2005).  This approach has been remarkably successful 
in classifying mental workload in complex tasks (Berka, et al., 2004; Freeman, Mikulka, Prinzel & 
Scerbo, 1999; Gevins, et al., 1998; Wilson & Fisher, 1991; Wilson & Russell, 2003a; 2003b).  
Further, this information has been used to modify an operator’s task via adaptive aiding with the goal 
of enhancing overall performance in demanding cognitive workload situations (Freeman, Mikulka, 
Prinzel & Scerbo, 1999; Wilson & Russell, 2007). In this last line of research, the focus on more 
realistic, complex tasks and the possibility of improved performance have rendered it very much in 
line with the concepts of neuroergonomics (Parasuraman & Wilson, 2008). For example, Wilson and 
Russell (2007) utilized a complex uninhabited aerial vehicle simulation to show that physiologically 
driven adaptive aiding could improve overall performance.  Operator physiology was monitored and 
used to discriminate between task demand levels. The task was presented at two levels of difficulty 
and electroencephalographic (EEG), electrooculographic (EOG), and cardiac data were recorded 
while the operators performed the task.  These data were used to train an artificial neural network 
(ANN) to recognize patterns in the physiological data that corresponded to the performance of the 
low and high mental demand conditions.  The operators then performed the task again and adaptive 
aiding was provided when the classifier determined that they were experiencing the high workload 
situation.  The aiding intervention was such that the operators were given more time to evaluate 
possible target stimuli.  The physiologically driven adaptive aiding improved their performance by 
approximately 50%.  This approach permitted the coupling of operator and system so that the 
momentary capabilities of the operator were monitored and used to determine whether or not they 
needed automation assistance. This provides the groundwork for systems that would be capable of 
monitoring operator functional state (OFS) and modifying task demands to assist the operator in 
times of cognitive overload.  These systems should produce improved overall effectiveness and 
potentially reduce catastrophic errors in real-world situations.  

The classification approach to mental state estimation sidesteps some of the issues associated with 
multiple comparisons common in high-dimensional physiological data, though it does carry with it 
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potential confounds such as the effects of data overfitting. Ideally, independent samples should be 
used for training and testing classifiers to produce robust results (Kriegeskorte, et al., 2009). Whether 
the goal is to build robust adaptive systems or to obtain robust results from independent samples in a 
classification study, it is necessary to collect data at multiple intervals separated in time. This raises 
the possibility that either the collection methods or the phenomena of interest are not stable across 
that time period: “An important and unresolved question is the extent to which classification-based 
decoding strategies might generalize over time, across subjects and to new situations” (Haynes & 
Rees, 2006).  With regard to complex task performance in applied settings where adaptive aiding may 
be implemented, the OFS monitor must function properly every day in order to be useful.  Therefore, 
it is necessary to determine the stability of the physiological signals over time during complex task 
performance. Further, since the physiological data are used as input variables for a classifier, the 
output of the classifiers must be evaluated to test their reliability. To date, the effects of day-to-day 
fluctuations in the operator’s physiology have not been thoroughly assessed while operators are 
engaged in complex tasks.

The stability of EEG signals has been investigated using eyes open/eyes closed conditions or while 
operators were engaged in simple laboratory tasks.  In those contexts, the EEG has been found to be 
fairly stable over time within each individual (Burgress & Gruzelier, 1993; McEvoy, Smith & 
Gevins, 2000; Pollock, Schneider, & Lyness, 1991; Salinsky, Oken, & Morehead, 1991). These 
previous studies relied upon spectral comparison rather than classification. In previous research 
examining the stability of fMRI results as a function of analysis technique and day (McGonigle et al., 
2000; Smith et al., 2005), between session (and day) variance was found to be comparable to within 
session variance. However, reliability generally decreased with task complexity. BCI systems also 
recognize the deleterious effects of day-to-day variation in the EEG signals and include procedures to 
ameliorate these effects (Wolpaw, et al., 2002). Huang et al (2011) present a procedure based on 
single-trial classification of event-related potentials (ERPs) in a target-detection task. We would 
expect that ERP components, such as P300, that are associated with rare targets should exhibit little 
variability from day to day, they were nonetheless able to show that incrementally adding additional 
sessions to their training set produced statistically significant increases in classifier performance, with 
area under the ROC curves increasing from approximately .95 to .98. It is unknown to what extent 
this result will apply to more complex tasks that cannot be structured as an ERP design, but must 
instead rely on spectral features for classification.

The assessment of reliability over time has most commonly been conducted by comparing one 
session to another within a day. However, adaptive systems require continuous, near real-time 
estimates of OFS that may exhibit greater variability. Further, the reliability of ensembles of input 
features as assembled by the classifier may not be predictable from knowledge of the reliability of 
each input feature alone.  ANN and linear discriminant analysis (LDA) have been used to determine 
OFS (Berka, et al., 2004; Wilson & Fisher, 1991; Wilson & Russell, 2003a), while kernel-based 
support vector machines (SVM) have been demonstrated to be effective in classifying physiological 
data (e.g. De Martino et al., 2007; Garrett et al, 2003; Lal et al., 2004). Poggio et al. (2004) have 
shown that classifiers that are stable under leave-one-out validation with stable error are optimally 
generalizable; consequently, an incremental SVM with leave-one-out optimization (Cauwenberghs & 
Poggio, 2001) would be expected to generalize well as long as test data are drawn from the same 
underlying class distributions.  In order to reduce the possibility that the present results are unique to 
the method chosen, all of these methods will be used and compared to test the reliability of OFS 
determination methods on the scales of seconds, hours, days, and weeks.
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Classification that does not generalize across days could be indicative that the classifier has become 
too dependent on unique or spurious differences between classes in the training set, known as 
overfitting. If the training data are drawn from just one day, then the classifier may key in on unstable 
features unique to that day.  An obvious solution to the problem of overfitting is to use multiple days 
in the training set, which should improve generalization. This will be tested in detail. The primary 
purpose of this study was to assess the stability of human operator physiology, as decoded by pattern 
classifiers, while performing a complex task over a four week period. We chose to focus on 
electrophysiology, as the collection conditions may be more carefully controlled across days than 
fMRI and it is more amenable to operational settings. We, therefore, set out to test the consequences 
of gathering and classifying electrophysiological data from multiple days in the context of OFS 
classification.

3.0 METHODS

The Multi-Attribute Task Battery (MATB) was used to provide three levels of complex task 
difficulty (Comstock & Arnegard, 1992). The task is broadly representative of aircraft operation 
(particularly remote piloting), and can include compensatory manual tracking, visual and auditory 
monitoring, and a dynamic resource allocation task. For this study, the monitoring (lights, dials, and 
communications) and resource allocation (fuel management) tasks were presented simultaneously 
during all task conditions. The compensatory manual tracking task was fully automated to more 
closely simulate advanced remotely piloted aircraft interfaces. The demands of each task were varied 
so that overall, three levels of difficulty were available.  Reaction times were collected from the 
monitoring and communication tasks and error scores were calculated from the resource allocation 
task.   Eight adult subjects (3 male), mean age of 21.1 years, were trained on the MATB until 
performance parameters attained asymptote with minimal errors. This procedure helped to reduce 
learning effects and allowed subjects to reach a desired level of familiarity and comfort with the 
laboratory setting.  This training took approximately 3 hours over one or two days.

During each recording session, subjects were presented a randomized sequence of low, medium and 
difficult task levels. Sessions consisting of five minutes each of low, medium and high cognitive load 
in random order were presented three times on each of five days distributed over one month. The 
number of days between sessions was randomized across subjects, with each participant assigned to a 
random order of four intervals: one day apart, two weeks apart, and two, one-week-apart intervals. 
Two subjects’ testing sessions are depicted in Figure 1. This randomization was intended to reduce 
the effects of fatigue and strategic changes associated with concentrated data collection.  
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SUN MON TUE WED THU FRI SAT

Week 1 Day 1 Day 1 Day 2

Week 2 Day 2 Day 3

Week 3

Week 4 Day 3 Day 4 Day 4

Week 5 Day 5 Day 5

Figure 1. Data collection days for two representative subjects. The intervals between days were randomized from a set of 
four intervals: one day apart, two weeks apart, and two, one-week-apart intervals.

Physiological data were recorded from the subjects during task performance.  Nineteen channels of 
EEG data were recorded at sites positioned according to the International 10-20 electrode system 
(Jasper, 1958).  Mastoids were used as reference and ground with electrode impedances measured 
and maintained below 5 kOhms. Horizontal and vertical EOG and electrocardiogram (ECG) were 
also recorded.  Each EEG channel (sampled at 256 Hz) was corrected for eye movement and blinks 
using a post-hoc regression method. The time series EEG, horizontal and vertical EOG data were 
filtered using elliptical IIR filter banks with passbands consistent with the traditional EEG bands.  
The frequency ranges of the five bands of EEG were delta (0.5-3 Hz), theta (4-7 Hz), alpha (8-12
Hz), beta (13-30 Hz) and gamma (31-42 Hz). Additionally, two expanded gamma bands were used, 
32 to 58 Hz and 63 to 100 Hz. Waveform length was also calculated for each EEG channel, in both 
one second and 10 second epochs (Pleydell-Pearce, Whitecross & Dickson, 2003; Shelley & Backs, 
2006). The raw ECG waveform was post-processed to extract time between successive R-wave 
peaks. The raw VEOG waveform was used to post-process a blink rate data channel.  Blinks were 
automatically detected using the algorithm developed by Kong & Wilson (1998); eyeblink duration 
and amplitude were then extracted per their suggestion of using the half-amplitude technique.

All of the features were segmented into 40-second windows with a 35-second overlap, producing a 
consistent sampling rate. All band power and waveform length features, when combined, formed a 
bank of 189 features (9 features for each of the 21 EEG/EOG channels). The four additional 
peripheral features - cardiac interbeat intervals, blink rate, blink amplitude and blink duration - were 
also used as input features, resulting in 193 total features.

In order to estimate the functional state of the operators, three classifiers were used to classify the 
physiological data on an individual subject level: ANN, SVM, and LDA.  Equal numbers of 
exemplars from the low and high cognitive load conditions were used to train the classifiers, 
representing data from easy and difficult task conditions, respectively.  Data from the medium 
cognitive load portion of the tasks were omitted from analysis to facilitate a binary data classification 
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paradigm.  The same preprocessed psychophysiological data was provided to all three classifiers, 
split into training, test, and validation sets where appropriate. Fifty percent of the data samples 
associated with any given analysis were randomly selected and used for classifier training, while 
twenty five percent were used to test the trained classifiers’ ability to identify the easy and difficult 
conditions. The remaining twenty five percent was held back as a validation set to control overfitting. 
The training and test sets included various combinations of days and sessions within a day, as 
detailed in the results. The data in each of the training sets were normalized separately for each 
feature by first dropping the highest and lowest five percent of data points to reduce the impact of 
outliers, and then extracting means and standard deviations. These parameters were then used to 
normalize both the training and validation sets to zero mean and unit standard deviation. Test sets 
were separately normalized to themselves using the same procedure.

The ANN was a feedforward backpropagation neural network (Widrow and Lehr, 1990; Lippmann, 
1987) implemented via the MATLAB Neural Network Toolbox (MATLAB R2008a, Neural Network 
Toolbox Version 6.0, The Mathworks, Natick, MA). First, the network learned the input-output 
classification from a set of training vectors. A separate validation set was used during training in 
order to reduce overfitting (Wilson & Russell, 2003a; Bishop, 2006): for any given learning iteration, 
the weights and biases of the ANN (derived from learning on the training set) were updated only if 
the feed-forward error on the validation set was equal to or less than the validation error obtained in 
the previous iteration.  Once trained, network weights were fixed and the ANN acted as a feed-
forward pattern classifier. As a classifier, the network examined input data it had never seen and 
predicted the class of the input data as either easy or difficult.

SVMs were constructed and tested using both the kernel-based least-squares SVM (LS-SVM) 
formulation presented by Suykens et al. (2002) and the incremental/decremental method with leave-
one-out validation from Cauwenberghs and Poggio (2001). Lacking a priori evidence in favor of any 
one input kernel, linear and tuned Gaussian radial basis function (GRBF) kernels were evaluated. The 
tuning parameters for the GRBF were determined individually via grid search optimization on each 
of the training sets, as implemented in the LS-SVM MATLAB toolbox. As SVM construction was 
not iterative with a stopping rule like the ANNs, the validation set was added to the training set.

The LDA was calculated using the implementation found in the MATLAB Statistics Toolbox 
(MATLAB R2008a, Statistics Toolbox Version 6.2, The Mathworks, Natick, MA). The same training 
and test data sets used by the ANN and SVM were used by the LDA.  The test data sets were again 
used to determine how accurately the trained classifier could correctly identify which of these data 
were from low or high cognitive load conditions.  As with the implementation of the SVMs, the 
validation set was included as part of the training data.

4.0 RESULTS

Analysis of the performance data revealed that the easy and difficult conditions produced 
significantly different mean responses (see Table 1).  For the communication, dials and lights tasks 
the difficult task produced significantly longer reaction times.  The difficult task also resulted in 
significantly greater error scores in the resource management task.  While the two levels of task 
difficulty produced significantly different operator performance, the main effect for days was not 
significant in any cases. The interaction between difficulty and days was likewise not significant. 



6
Distribution A: Approved for public release; distribution unlimited.

88ABW Cleared 3/26/2013; 88ABW-2013-1480.

This suggests that there was no significant change in task performance across days, a critical 
condition for evaluating classifier performance.

Table 1.   Means and standard errors (SE) of reaction times, in seconds, for communication, dials and light tasks and 
mean error for the resource management tasks. The F values and probabilities for the comparison between the easy and 
difficult task levels are presented in the bottom row.

Communication Dials Lights Resource 
Management

Easy 2.52 (.42) 2.82 (.59) 1.69 (0.20) 495.25 (46.82)
Difficult 3.11 (.42) 3.78 (.59) 2.32(0.27) 747.65( 95.69)
ANOVA F (1,7) = 15.24   

p < 0.01
F (1,7) = 32.01   
p < 0.01

F (1,7) = 71.66   
p < 0.01

F (1,7) = 8.42     
p < 0.02

In order to assess the reliability of each of the classifiers in discriminating between easy and difficult 
task conditions using the physiological data, the mean proportion of correct classifications for the five 
days were examined. It was expected that the ability of the classifiers to generalize across days would 
increase as the number of days in the training set increased; presumably, the classifier learns those 
features that are reliable across the days in the training set.  Figure 2 shows the accuracies obtained 
with each of the three classifiers as a function of number of days in the training set. The within-day 
accuracies are for the withheld test data from the same days as the training set (25% of the day’s data 
set), while the between-day accuracies are for the days that were not part of the training set. Between-
day accuracies have been averaged across all subjects and combinations of which days were in the 
training and test sets. All possible combinations of training and test days were permuted and tested, in 
order to reduce the impact of any one day being an outlier. For example, in the 1 Day condition, 
accuracies were evaluated using each of the five days separately to train a classifier, with the 
remaining four days combined to form the test set.
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Figure 2. Classification accuracy as a function of method and number of days in the training set. Error bars in all figures 
are standard errors of mean proportion of epochs correct across subjects. The within-day average is collapsed across 
methods, as all three were at ceiling when trained and tested on the same day. Note that the test sets for the within-day 
proportion of epochs correct were randomly sampled (the withheld 25% test set) from all days that were combined to 
form the training set.

All three classifiers were at ceiling within-day, and have been collapsed for that condition. All three 
classifiers are also well above chance (.5) performance in all cases. However, the decrease in 
accuracy from within-day to between-day is substantial, amounting to at best a drop from .99 to .83 
in the case where four days of data were used for training the ANN.

The SVMs were constructed using the LS-SVM formulation as well as an incremental method with 
leave-one-out validation. These methods produced very similar accuracies, with less than 1% 
difference on average across subjects. For simplicity, the reported accuracies are just from the LS-
SVM. The SVMs were also constructed using either an optimized GRBF input kernel or a linear 
input kernel. Both kernels produced within-day classification at or near ceiling, however the linear 
kernel produced dramatically better between-day classification; consequently all reported SVM 
accuracies are from the linear kernel. This is generally consistent with previous results that 
demonstrated good generalization for linear SVM applied to magnetic resonance imaging data 
(Klöppel et al., 2008).

A three (classifiers) by four (days in the training set) repeated-measures ANOVA was performed on 
the between-day accuracies. There was a significant main effect of classifier, F(2,14)=33.2, p<.01, as 
well as a significant effect of days, F(3,21)=8.2, p<.01. The two-way interaction was also significant, 
F(6,42)=9.2, p<.01. The ANN produced both the highest overall accuracy as well as the largest 
increase with more days in the training set. The LDA did not perform as well as the ANN or the 
SVM. For the ANN, the prediction that increasing the number of days would improve between-day 
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accuracies was correct. Somewhat surprisingly, neither the SVM nor LDA showed such a consistent 
trend. It is possible that different approaches to implementing these classifiers could produce 
different results.

These analyses were conducted with the complete data set, including both EEG and peripheral 
physiological measures (ECG, EOG). In order to determine the relative contribution of peripheral 
measures to both accuracy and stability across days, this last analysis was repeated with only EEG 
features. Across conditions and classifiers, this resulted in a mean decrease in accuracy of 2%, with a 
range of 1.4 to 3.1%. Including peripheral measures improved classification accuracy generally, 
without increasing or decreasing stability across days. Consequently, all subsequent analyses include 
both EEG and peripheral measures.

The observed decline in classification accuracy across days could be caused by either poor 
generalization of the classifiers (overfitting), or by changes in the underlying distributions of data 
associated with the easy and difficult task conditions. The distributions associated with these classes 
were consequently examined post hoc; four examples are presented in Figure 3. Individual feature 
distributions are highly overlapped; however in the first two examples, there is a mean shift between 
the easy and difficult task conditions that reverses from the first day’s data to the second. In the 
second two examples, the feature distributions are relatively stable across days. Based on these 
examples, it is unlikely that the decline in accuracy is solely a failure of generalization; without 
additional data that enables an assessment of feature stability, it is difficult to envision an a priori
means of coping with a reversal of the ordinal relationship between classes.
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Figure 3. Sample feature distributions drawn from two subjects. Each panel plots the distributions for a selected feature 
and subject as a function of task difficulty and day. The vertical dashed line separates the first and second days of data 
collection. The boxes plot the mean and inner quartiles, with the whiskers extending to three standard deviations above 
and below the mean. Any outlier values beyond this range are plotted as crosses. Across subjects, any one feature exhibits 
relatively small differences between classes; however, 3A and 3B illustrate that these small differences can invert from 
one day to the next. 3C and 3D illustrate that features do exist that are more stable across days; presumably, 
improvements in classification accuracy associated with multiple days of training data involve weighting these features 
more heavily.

Knowing both that there is a significant decline in accuracy when classifying across days and that the 
ANN handled it best of our classifiers, additional ANN analyses were conducted to identify the time 
course of the decline in accuracy. Each five minute trial at a particular difficulty level was split into 
two halves, enabling comparisons (1) within halves (training and test sets seconds apart), (2) from the 
first to the second half of a trial (minutes later), (3) from one session to the next session of that day 
(hours later) and (4) from one data collection day to the next (days to weeks later). A first test was 
done to examine the effect of increasing the interval between days; there was no significant 
difference associated with increasing the interval from one day to one week to two weeks, 
F(2,14)=1.08, p>.3. Therefore, the results for the days in between have been collapsed across those 
intervals. The results of classifying across varying time periods are plotted in Figure 4. A repeated 
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measures ANOVA revealed a significant main effect due to the interval between training and test, 
F(3,21)=17.9, p<.01; the increase in time from seconds to hours resulted in a significant decrease in 
classification accuracy. It is possible that the accuracy in the seconds interval has been increased due 
to the overlapping window; non-overlapping forty-second windows would result in too little data to 
analyze. While slightly lower than hours on average, the accuracy between days was not substantially 
different. It appears that the primary decline in accuracy is on the scale of hours and does not change 
after up to a two-week interval; note that the two-week interval still resulted in classification accuracy 
across those days significantly above chance.

Figure 4. ANN classification accuracy as a function of time from training set. By subdividing each 5 minute trial into two 
halves, we obtained accuracy as a function of time between training and test sets: the reserved test data (25% witheld) 
from the training set is seconds apart, the second half of a trial is minutes apart, the first and last sessions are about 1 hour 
apart, and subsequent testing days are from 1 day to 2 weeks apart.

A practical solution to improving classification accuracy over time is to accept that unpredictable 
variability exists from day-to-day, and use small amounts of data from the beginning of a new day to 
retrain a classifier, thus including the day-to-day changes incrementally. This is essentially the same 
approach successfully used by Huang et al (2011) for their ERP data. This was accomplished 
iteratively with the ANN, using a training data set starting with one whole day’s data, and then 
adding (in increments of one half-trial, or 2.5 minutes per data class) increasing amounts of data from 
a subsequent day. The test sets were then constructed as in Figure 4, drawing from the withheld 
training data, the next half-trial, the next session, or the next day. The prediction is that increasing 
amounts of training data from a new day should gradually improve classification accuracy as 
compared to testing a classifier trained only on the data from the previous day. The results of this 
analysis applied to the first and second days of data collection are plotted in Figure 5.
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Figure 5. Classification accuracy as a function of quantity of data from a new day used to train the classifier. The training 
sets included all of Day 1 (No additional), and then increasing amounts of data from Day 2, taken in sequence (2.5 to 7.5 
minutes per class). Test sets were from Day 2 (Seconds to Hours) or Day 3 (Day), with the time in between training and 
test sets given on the abscissa. “No additional” is a baseline calculated by testing a classifier trained only on Day 1 on the 
same test sets drawn from Day 2; please note that for this baseline, all test sets are separated from the training data by a 
day. 

A four (from no additional training data through 7.5 minutes/class) by three (time between training 
and test, excluding the uninformative seconds category) repeated-measures ANOVA revealed a main 
effect of additional training data, F(3,21)=8.8, p<.01, a nonsignificant effect of time between training 
and test, F(2,14)=2.5, p=.11, and a significant interaction F(6,42)=3.5, p<.01. The interaction is 
likely significant due to the additional training data conditions being superior only at the minutes and 
hours levels. A planned comparison between the lowest (2.5 minutes per class) amount of additional 
training data and the baseline/no additional data condition resulted in significant improvement for the 
additional training data at the minutes level,  t(7)=3.0, p=.03 (Bonferroni corrected), and marginally 
significant improvement at the hours level, t(7)=2.3, p=.08 . The comparison for the days level was 
nonsignificant. Adding as little as 2.5 minutes of data per class from a new day resulted in improved 
performance over using only data from the previous testing data to train the ANN.

An additional consideration in analyzing data from multiple days is the source data for normalization 
parameters. If the object is real-time classification of new data, normalization parameters would have 
to be derived from the training set; on the other hand, if classification is being performed post hoc 
various options are available. We tested three logical alternatives: deriving normalization parameters 
separately for each training and test set, normalizing the entire data set together, and separately 
normalizing each day. This last method was intended to be representative of using calibration or 
small amounts of training data from each day to separately normalize. The results as a function of 
number of days in the training set are presented in Figure 6. The highest overall classification 
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accuracies are produced by separately normalizing training and test sets, as was done in the analyses 
presented above. Post hoc, mass normalization of the data set resulted in similar but consistently 
lower accuracies. Normalizing each day separately erased the benefit for including more than one day 
in the training set. 

Figure 6. Classification accuracy as a function of number of days in the training set and normalization scheme. 
Separately normalizing each day to itself produced generally worse accuracy, while the other two schemes were not 
significantly different. The data presented in all the previous figures was generated by normalizing training and test 
separately.

5.0 DISCUSSION

The results of the present study replicate earlier reports by demonstrating that classifiers that are 
trained and tested on physiological data from the same day can very accurately determine which of 
two levels of task difficulty produced the data (Berka, et al., 2004; Freeman, Mikulka, Prinzel & 
Scerbo, 1999; Gevins, et al., 1998; Wilson & Fisher, 1991; Wilson & Russell, 2003a; 2003b).  This, 
no doubt, contributed to the successful application of adaptive aiding using these procedures (Wilson 
& Russell, 2007).  However, the results also show that the ability of the three classifiers to correctly 
classify easy from difficult task conditions deteriorates over time.  In all cases, the accuracy levels 
remain above chance.  However, improved classifier accuracies over multiple days would be 
beneficial in facilitating practical applications of adaptive aiding and other uses of operator functional 
state estimation. The present results suggest that the ANN classifier is superior to the SVM and LDA 
classifiers for this particular data set; it is likely that data sets with different structure would change 
their relative accuracies. Given that both the ANN and SVM with GRBF input kernel are nonlinear 
classifiers; it is somewhat surprising that the linear SVM performed better between days than GRBF 
while not outperforming ANN. One possible explanation for this difference is the handling of the 
validation set. Using the validation set as a check for overfitting in the ANN may have resulted in 
better generalization as compared to simply including that data in the training set as was done with 
the SVM and LDA classifiers. If that were the only cause, we would have expected SVM with leave-
one-out crossvalidation to be closer to ANN performance.  It is possible that further optimization of 
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any of these techniques would improve generalization across days, but the results obtained from the 
ANN are nevertheless encouraging that relatively high accuracies are achievable.  

The within-day results for all three classifiers suggest that when the test data and training data are 
taken from the same larger data set, very high levels of test accuracy can be expected.  All three 
classifiers produced nearly perfect discrimination of easy and difficult conditions by using the 
physiological data.  However, when the test data were collected at a different time from training data, 
classifier accuracy declined.  This was seen when the test data were from an entirely different day, 
and also when the test data were generated minutes and hours apart from the training data.  Variations 
in the physiological data exist on a scale from seconds to days that reduce the ability of the classifiers 
to correctly identify the data. Variation in physiological data within a single day (circadian effects) 
has been extensively researched; however similar variation across multiple days has not been as well 
studied. The decline in classification accuracy appears to level off at the hours level and is maintained 
above chance from one day to up to two weeks later (Fig. 4). This should not be taken as indicative 
that the underlying causes of the observed variability are the same at the hours and days scale; Figure 
5 demonstrates that hours and days can dissociate and may reflect different but roughly equal sources 
of variability. When data from our maximum of four days were added to the ANN training set, the 
accuracy levels across days reached the rather high level of approximately 83% correct classification 
(Fig. 2).  This level of discrimination has been shown to be very beneficial when used to trigger 
adaptive aiding (Wilson & Russell, 2007).  It is quite possible that these levels of classifier accuracy 
would be very useful in many situations requiring continuous estimates of OFS.  This would be 
especially true of work environments where there is little or no performance data, such as in 
situations of high levels of automation where the operators primary responsibility is to monitor 
system functioning, detect outlier conditions and respond appropriately.  Even being able to detect 
operator cognitive overload in hazardous situations with 83% accuracy would be very advantageous: 
as long as overall adaptive man-machine system performance under cognitive overload exceeds 
performance without OFS monitoring, such a system should be considered useful. Human operators 
gaining experience with such a system are also likely to adapt their own behavior to the reliability of 
the monitoring, helping to ameliorate the consequences of misclassifications. This could be 
particularly effective if the monitoring is implemented as a component of a decision aid (McGuirl & 
Sarter, 2006).

Rather than collecting multiple sessions and days of training data, another strategy to improve 
classifier accuracy is to adjust the classifier using relatively small amounts of physiological data from 
the current day. This would represent a compromise between the clearly effective but inefficient 
approach of training a new classifier each day, and doing no updating at all. The present results 
showed that adding training data from subsequent sessions improved the accuracy of the ANN 
classifier. By starting with one full day of training data and then adding from 2.5 min to 7.5 min of 
data per level of task difficulty from the test day, the accuracy of the classifier for the remainder of 
that test day was significantly improved. This result is consistent with Huang et al (2011), despite that 
work using ERPs associated with target detection, suggesting that the incremental addition of training 
data is a generally useful approach.  The effect diminished when applied to an additional day after the 
test day from which additional training data was added (Fig. 5).  This suggests that a practical 
solution to reliable OFS classification could be to conduct brief recalibration sessions each day 
following an initial longer training session. This sort of brief setup has the potential for incorporation 
in practical monitoring systems.
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The underlying nature of the changes from day-to-day is not clear from the present results. The 
reversal of class ordering demonstrated in Figure 3 suggests that changes in the distributions of 
features associated with the easy and difficult task conditions is a likely contributor. Poggio et al. 
(2004) established that classifiers such as SVM may be provably stable and generalizable, however 
their analysis is predicated on the assumption that the data distributions (or generating functions) 
associated with each class are fixed. This may not hold for physiological signals associated with 
cognitive task difficulty; it appears that significant variations in distributions occur over time, 
including reversing ordinal relationships. This variation is not solely due to circadian effects within a 
day (e.g., Refinetti, 1999); otherwise accuracy should have been somewhat improved when testing 
with data from equivalent time periods on a subsequent day.  The day-to-day differences in the 
physiological data negatively impacted all three classifier’s accuracy results when tested on different 
day’s data.  However, very high levels of discrimination were found when the trained classifiers were 
tested on data from the same data collection days.  This was true when the classifiers were trained on 
any of the single day’s data. This suggests that there are characteristics in the physiological data that 
can be used by the classifiers to very accurately discriminate between easy and difficult task 
conditions on any given day.

The use of the different normalization schemes was an attempt to determine whether or not the 
variability from day-to-day could be ameliorated by making the data distributions more consistently 
normal by various methods (Fig. 5).  This was unsuccessful and suggests that the solution to the 
differences between the physiological data from day-to-day is not likely to be just a matter of 
normalizing the data in different ways. As seen in the sample feature distributions, response 
characteristics of several of the 193 physiological features can dramatically change during complex 
task performance. If the order of classes within a feature is not preserved across a day, it is difficult to 
define an a priori means of assigning data to the proper class. Even if this is the case, the differences 
between classes are consistent within a given day or at least over several minutes if not hours of that 
day.  Techniques that modify the data distributions such as unsupervised covariate-shift minimization 
(Satti, Guan, Prasad & Coyle, 2010) as well as unsupervised updating of classifiers are being 
developed for BCI in order to maintain discrimination accuracies; this has been recognized as a key 
challenge for deployment of BCI (Krusienski et al, 2011). Such techniques will likely prove directly 
applicable to mental state classification. Nevertheless, the current results showed that accuracy levels 
of 87% and 86% correct could be produced within minutes and hours (Fig. 4). With continued 
advancement in sensors, signal processing, and pattern classification, additional improvement can be 
expected that should further improve the practicality and real-world application of mental state 
classification. 

6.0 CONCLUSIONS

This work unit demonstrated that the stability of workload monitoring via classification of 
neurophysiological data can be enhanced significantly, likely to a level sufficient for future 
applications. It could not address several of the key basic science questions, namely why this 
variability exists and what it may tell us about the ability of operators to perform tasks on different 
days. Future work, both basic and applied, should attempt to address these issues.
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LIST OF ABBREVIATIONS AND ACRONYMS

ANN artificial neural network

ANOVA analysis of variance

BCI brain computer interface

ECG electrocardiography

EEG electroencephalography

EOG electrooculography

fMRI functional magnetic resonance imaging

GRBF Gaussian radial basis function

Hz Hertz

IIR infinite impulse response

kOhms kiloohms

LDA linear discriminant analysis

LS-SVM least squares support vector machine

MATB Multi-Attribute Task Battery

OFS operator functional state

SE standard error

SVM support vector machine
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